
Touch Interface and Keylogging Malware 
Samuel Moses 

Brigham Young University 
Cybersecurity Research Lab 

Provo, Utah 
 

Jon Mercado 
Brigham Young University 
Cybersecurity Research Lab 

Provo, Utah 
 

Allie Larson 
Brigham Young University 
Cybersecurity Research Lab 

Provo, Utah 
 

Dale Rowe 
Brigham Young University 
Cybersecurity Research Lab 

Provo, Utah 

 
 

ABSTRACT-Software keyloggers have been used to spy on 
computer users to track activity or gather sensitive 
information for decades. Their primary focus has been to 
capture keystroke data from physical keyboards. However, 
since the release of Microsoft Windows 8 in 2012 
touchscreen personal computers have become much more 
prevalent, introducing the use of on-screen keyboards 
which afford users an alternative keystroke input method.  

Smart cities are designed to enhance and improve the 
quality of life of city populations while reducing cost and 
resource consumption.  As new technology is developed to 
create safe, renewable, and sustainable environments, we 
introduce additional risk that mission critical data and 
access credentials may be stolen via malicious keyloggers. 
In turn, cyber-attacks targeting critical infrastructure using 
this data could result in widespread catastrophic systems 
failure. In order to protect society in the age of smart-cities 
it is vital that security implications are considered as this 
technology is implemented.    

In this paper we investigate the capabilities of keyloggers 
to capture keystrokes from an on-screen (virtual) keyboard 
and demonstrate that different keyloggers respond very 
differently to on-screen keyboard input. We suggest a 
number of future studies that could be performed to further 
understand the security implications presented by on-
screen keyboards to smart cities as they relate to 
keyloggers.  

Keywords-Malware, Software Security, Privacy 

I. INTRODUCTION 

Human-Computer Interfacing is an ever evolving 
discipline in which numerous new and innovative 
technologies have recently become mainstream in 
society. Touchscreens, speech recognition, gesture 
control and swipe passwords have found their way 
into the hands of consumers within the last decade. 
However, it is often the case that our ability to 

develop this technology precedes our understanding 
of the security risks involved.  

One of these security risks is keyloggers. Keyloggers 
have long been a serious threat to computer systems 
throughout the world. In 2013, stolen passwords 
played a role in 48% of total data breaches caused by 
hackers. In many cases keyloggers were the medium 
by which these passwords were obtained [1]. In 
Verizon’s 2014 Data Breach Investigations Report, 
keylogger malware was one of the top 10 threats in 
Point-of-Sale (POS) intrusions and crimeware, and 
was involved in 2% and 13% of attacks respectively. 
Keyloggers are also heavily used in cyber-espionage 
and were involved in 38% of related data breaches 
[2].  In Verizon’s 2015 Data Breach Investigations 
Report, the use of keyloggers was shown to decline, 
but are still observed in about 5% of breaches. In 
addition, POS attacks continue to evolve through 
successful phishing campaigns and network 
penetrations involving keyloggers which are still 
used in at least 9.5% of successful attacks [3].   

In this paper, we will focus our attention on the 
particular threat that keyloggers will pose to the 
terminals which provide direct access to the 
groundwork that smart cities will be built upon. This 
threat gained significant momentum with the recent 
inclusion of an on-screen keyboard into Microsoft’s 
Windows 8 operating system. As the Windows 
operating system is currently used by billions of users 
and in a number of critical infrastructure applications, 
the principles and ideas presented through this 
research can be theoretically applied to future 
systems involved in the development of smart cities. 
Specifically, we will look at how current keylogging 
applications interact with the on-screen keyboard and 

2015 11th International Conference on Innovations in Information Technology (IIT)

978-1-4673-8511-4/15 $31.00 ©2015 IEEE 86Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



the potential for future malware development in this 
area.     

II. KEYLOGGERS 

Keyloggers are traditionally used to capture and track 
a user’s keyboard input, often to attempt to steal the 
user’s private information or login credentials. These 
keyloggers were originally simple surveillance tools, 
but advanced keyloggers have become more 
sophisticated and can track complex functions like 
copy and paste operations. They have also been 
found to be able to conceal themselves, gather system 
data, and communicate and report to external sources. 
Hardware keyloggers and software keyloggers exist 
that can be used for this purpose.  

Hardware keyloggers are small devices that are 
physically attached to a machine to locally store a 
user’s keystrokes. They are normally installed 
between the keyboard and its I/O port so that it can 
accurately interrupt key-press data and capture it 
before forwarding it on to the motherboard. In order 
to install a hardware keylogger, the attacker must 
have physical access to the machine.  

Software keyloggers are applications that are 
installed directly into the operating system of the 
target computer and will run in the background while 
logging user’s keystrokes. There are three main 
methods for developing software keylogging 
systems: The Keyboard State Table Method, the 
Windows Keyboard Hook Method, and the Low-
level Kernel-mode method [4]. 

Malware built using the Keyboard State Table 
method uses the active application's windows 
interface table to access the status of 256 virtual keys, 
which correspond to physical keys on the keyboard. 
This table is normally used by applications to 
determine the use of key combinations (e.g. 
Ctrl+Shift). This variety of keylogger reveals 
keystroke information by attaching its thread into the 
window’s thread message loop and recording the 
information before it is sent to the Keyboard State 
Table and passed on to the Window's procedure [4].  

The Windows Keyboard Hook method utilizes a 
method known as "hooking" to log keystrokes. 
Hooking intercepts the normal process of a running 
subroutine and calls a malicious function to gather or 
alter information before continuing on with the initial 
subroutine.  This hooking method is unique to 
Windows Operating Systems, and can be 

implemented at any level of the operating system. In 
a Windows operating system, keystroke events from 
the user are flagged through a message mechanism 
which passes the keyboard data to the windows 
procedure. This mechanism is hooked and can 
provide an attacker with the ability to record 
keystrokes and even intercept and alter them before 
they reach the intended windows procedure [5].  

Some keyloggers are designed to run with kernel 
level privileges. Keyloggers at this level are 
advanced spyware rootkits (rootware). These 
applications are well hidden and hook into vital 
system routines to collect and transport the 
keystrokes without the user being aware [5]. This 
type of keylogger is more difficult to implement but 
is also harder to detect. Kernel level keyloggers 
require administrator privileges to plant on the target 
machine, but once accomplished a keyboard filter 
driver is installed which allows the keylogger to 
capture keystrokes even before the operating system 
receives them [4].  

Keylogger programmers are constantly trying to 
come up with new and innovative ways to capture 
information from their victims. With antivirus and 
antimalware companies working to detect and block 
keyloggers, keylogger programmers have to come up 
with new and stealthier approaches to attack the 
problem. For this reason it is imperative to 
understand how today’s keyloggers are interacting 
with virtual keyboards and discover if they are 
capable of capturing touchscreen keyboard input.  

III. PAST RESEARCH 

Little research has been performed to identify the 
response of current keyloggers to the keystrokes of 
on-screen keyboards. There has, however, been some 
research done to develop keyloggers designed to 
work with touchscreen computers (a.k.a. 
touchloggers), but plans for this research is generally 
intended for mobile operating systems. For example, 
some work done by HAO Chen utilizes smartphone 
jiggle during key-presses to calculate which key of 
the virtual keyboard the user has tapped. His app has 
shown to correctly track over 70% of keystrokes [6].  

The University of the Aegean worked on developing 
a touchlogger that can be a reliable means of 
profiling the user of a mobile device. To achieve their 
goal there were two fundamental steps: First, the 
touchlogger needed to gain administrative 
permissions to be able to hook and override operating 

2015 11th International Conference on Innovations in Information Technology (IIT)

87Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



system subroutines which were responsible for the 
detection and management of touch events. Second, it 
needed to run in the background of the operating 
system and constantly track and collect the user’s 
touch behavior. The basic steps involved were very 
similar to traditional keyloggers, but in order to track 
specific keystrokes within the virtual keyboard they 
needed to identify the touch events that occurred 
inside the soft keyboard area and translate every 
touch to the corresponding key which proved difficult 
[7]. Again, their work was very mobile focused and 
specific to Apple Inc.’s iOS mobile platform.  

Another study was completed in 2008 on how 
attackers were using keyloggers to enter into digital 
crime and created an underground economy. In 2008, 
keyloggers utilizing dropzones were a new emerging 
threat. Dropzones are publically writeable directories 
on a server that serve as an exchange point for 
keylogger’s stolen data[8]. 

A basic understanding of the attack is 
straightforward. The attacker first infects victims 
with keylogging malware, which then secretly logs 
credentials and the victim’s online service 
information including financial data and healthcare 
information. After the malware sends the data to the 
dropzone the attacker can then access the dropzone 
and utilize the data for any purpose.  Typically this 
data is sold via illegal underground networks. 
Researchers used honeypots and spam traps to 
analyze and collect the different keylogger 
techniques actively being used.  Analyzing these 
keyloggers, the researchers were able to extract the 
location of the dropzone, access them, and harvest 
the keylogger data just like the attackers. They 
observed these attacks during a seven month period 
and the results were impressive [8]. 

Over the seven month period, the researchers found a 
total of 33GB of keylogger data from more than 70 
unique dropzones.  This data was stolen from more 
than 173,000 compromised machines and worth 
several million dollars. In their analysis, they found 
10,775 unique bank account credentials. Looking at 
the results from the dropzone, they were able to see 
that 25 victims had more than $130,000 in their 
checking accounts and on average $5,225 in savings. 
This resulted in the attackers having access to 
millions of dollars through those accounts [8].  

Within the dropzone, 5,682 valid credit card numbers 
were found which could have caused a potential loss 

of over one mission dollars. They also recovered 
149,458 login credentials for Yahoo, Google, 
Windows Live and AOL and 78,359 stolen 
credentials for social media sites [8].  

A conservative estimate based on a study by 
Symantec suggests an attacker can earn several 
hundred up to thousands of dollars per day from 
keylogger based attacks [8].  PWC, in The Global 
State of Information Security Survey 2015, stated 
that the black market for stolen data is growing in 
size and complexity [9].  “A complete identity-theft 
kit containing comprehensive health insurance 
credentials can be worth hundreds of dollars or even 
$1,000 each on the black market, and health 
insurance credentials alone can fetch $20 each; stolen 
payment cards, by comparison, typically are sold for 
$1 each” [9]. The market is growing, and keyloggers 
are still an actively used tool for hackers.  

IV. METHODOLOGY 

In order to discover the ability of keyloggers to 
capture touch-screen keystroke data, we selected a 
sample of five software keyloggers with which we 
performed our tests. In order to observe a variety of 
applications, we selected one commercial keylogger, 
two freeware keyloggers, one JavaScript browser-
based keylogger, and a malware keylogger. We also 
tested a hardware keylogger to confirm our 
assumption that hardware keyloggers are unable to 
capture virtual keyboard data. 

The Test Machine 
The computer that was used to test all keyloggers was 
a Dell Inspiron 1545 laptop with attached HP KU-
0316 USB Keyboard and Dell ST2220T touch screen 
monitor. Microsoft Windows 8.1 64-bit was the 
installed operating system. The application through 
which all tests were performed was Microsoft 
WordPad with the exception of the Metasploit 
JavaScript keylogger which utilized Internet Explorer 
to carry out tests.  

The Keyloggers 
Free Keylogger version 3.95 – Freeware available 
from multiple application hosting web sites 

Actual Keylogger version 3.2 – Commercial software 
available from actualkeylogger.com 

- We utilized the trial version, which limits 
keylogging session time to forty minutes.  

2015 11th International Conference on Innovations in Information Technology (IIT)

88Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



Metasploit Meterpreter Keylogger – A keylogger 
built into the meterpreter malware payload available 
through Metasploit  

- We used Metasploit version 4.11.1-
2015032401 on a remote Kali Linux 1.1.0 
machine to create the meterpreter payload. 
Metasploit was then set up to listen for 
incoming meterpreter connections and the 
malicious payload was installed on the test 
machine via USB flash drive. Once 
meterpreter was installed it connected to the 
remote Metasploit server. We then started 
the built-in keylogger and were able to view 
the keystrokes made on the test machine on 
the remote Kali Linux server.  

Metasploit JavaScript Keylogger – A browser-based 
keylogger designed to capture keystrokes of users 
browsing the Internet 

- This was a Metasploit module written by 
Marcus Carey that creates a website with a 
malicious script that captures the keystrokes 
of anyone visiting the website. Again, the 
Kali Linux remote host was setup as the 
server to host this malicious website which 
the test machine was to navigate to in order 
to perform the tests. The web browser used 
in our test was Internet Explorer 11. 

Spyrix Keylogger Free version 7.0 – A freeware 
keylogger with a paid for version available from 
spyrix.com 

KeyGrabber Wi-Fi Premium – A hardware keylogger 
that stores keystrokes on internal flash memory local 
to the keylogger itself 

Testing Methodology 
We used a United States English keyboard and tested 
all keys on the main keypad that had corresponding 
keys on the Windows virtual keyboard. The 
keystroke pattern we used in our test is as follows, 
each line ending with a carriage return: 

1234567890-= 
~!@#$%^&*()_+ 
qwertyuiop[]\  
QWERTYUIOP{}| 
asdfghjkl;’ 
ASDFGHJKL:” 
zxcvbnm,./  
ZXCVBNM<>?  
<ctrl> 

The quick brown fox jumped over the lazy 
dog 
The quick red <backspace> <backspace> 

<backspace>  
 
Below is the guideline that we followed for testing 
each keylogger: 

• Turn off Windows Defender. This is 
required for the installation of Actual 
Keylogger and the Meterpreter payload. 

• Install the keylogger 
• Perform the test keys on the physical 

keyboard 
• Save the results (screenshots and log files 

depending on how keylogger results were 
recorded) 

• Perform the test keys on the touch screen 
keyboard 

• Save the results (screenshots and log files 
depending on how keylogger results were 
recorded) 

• Reset the Windows 8.1 installation to 
factory defaults 

• Repeat for each keylogger being tested 
 
V. FINDINGS 

All keyloggers were able to successfully capture all 
keystrokes performed on the physical keyboard. We 
will focus the subject of our findings on those 
keystrokes captured by each keylogger through the 
virtual keyboard.  

Complete Virtual Keyboard Capture 

The only Windows keylogger application that was 
able to capture all keystrokes from the virtual 
keyboard was “Actual Key Logger”. The JavaScript 
keylogger was also able to successfully log all 
keystrokes though the Internet Explorer web browser. 

Partial Virtual Keyboard Capture 
The Meterpreter keylogger, Free Keylogger and 
Spyrix keylogger were able to register the carriage 
return and backspace virtual keystrokes but were 
unable to log any others from our test. 

No Virtual Keyboard Capture 
The only keylogger that did not register any virtual 
keystrokes was the KeyGrabber physical keylogger. 

Our software keyloggers only fell into two 
categories: those that could log all virtual keystrokes 
and those that only registered the backspace and 
carriage return characters. This suggests that there is 
a marked difference in how keyloggers respond to 

2015 11th International Conference on Innovations in Information Technology (IIT)

89Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



virtual keyboard use within Windows based on the 
technique used to monitor keystrokes.  We 
hypothesize that this difference might be a result of 
where the keylogger is capturing keyboard data.  
Return and backspace perform additional functions 
apart from ASCII translation which may have 
resulted in keylogging software intercepting these 
keyboard interrupts differently than in the case of 
typical ASCII characters. Since the results vary 
between keyloggers, we redirect our attention to what 
can be done in the future to further understand these 
differences and their implications 

Keylogger 100% 
Keystroke 
Coverage 

Entr + 
Bksp 
Only 

0% 
Keystroke 
Coverage 

Actual 
Keylogger 

x   

Metasploit 
JavaScript 
Keylogger 

x   

Free 
Keylogger 

 x  

Meterpreter 
Keylogger 

 x  

Spyrix 
Keylogger 

 x  

KeyGrabber 
Physical 
Keylogger 

  x 

Table 1: The percentage of keystrokes that each 
keylogger was able to capture from the Windows on-

screen keyboard 

VI. RELEVANCE 

Understanding the potential impact of keyloggers on 
upcoming technologies is important to be aware of 
while developing smart cities. Technology can 
enhance the quality of life and performance within a 
city, but at what cost? We need to analyze the arsenal 
of tools available to malicious actors and propose 
suitable countermeasures as we design new city-wide 
networks. Otherwise we will be unprepared to 
mitigate the risks to people’s privacy and security 
that are created when developing smart cities. Indeed 
we have already witnessed a severe lack of security 
consideration within the critical infrastructure of 
today’s urban centers. Recently the Industrial Control 
Systems Cyber Emergency Response Team (ICS-
CERT) of the Department of Homeland Security 
released alerts ICS-ALERT-11-343-01 and ICS-
ALERT-11-343-01A after having responded to a 

number of reports of vulnerable supervisory control 
and data acquisition (SCADA) systems that are open 
to attack and are at high risk. These are the systems 
responsible for controlling high-profile critical 
infrastructure including power grid, water, and 
communications networks. Attacks on these systems 
have the potential to result in catastrophic 
consequences including loss of life and billions of 
dollars in recovery costs [10]. Specifically, these 
alerts speak to SCADA systems that are internet 
accessible, which will likely become the backbone of 
many new systems used to create smart cities. Our 
research into how current keyloggers interact with 
touch-screens is just a first step in one area toward 
understanding the security implications that arise 
with the emergence of connected city infrastructure.  

VII. STUDY LIMITATIONS 

This small study has several limiting factors. We 
limited the number of software keyloggers to five, 
which allowed us to witness the differences in how 
they can respond to a virtual keyboard environment. 
From this we can suggest from our testing that using 
a virtual keyboard will decrease the likelihood that 
sensitive information will be obtained from a system 
where a keylogger is installed.  However, this limited 
sample could not tell us the likelihood that virtual 
keyboards will circumvent keyloggers if in use in 
smart city applications when deployed via malware, 
nor can we determine the degree to which using a 
virtual keyboard might be safer than using a physical 
one. Among the five keyloggers selected, there were 
also a variety of methods for installation and logging 
used that caused the testing process to be 
inconsistent.  
 
With the exception of the Metasploit JavaScript 
keylogger all tests were performed using the 
Microsoft WordPad application. This was done so 
that we could easily test a large number of 
keystrokes. However, this testing does not indicate 
whether these keyloggers would perform the same 
way in other applications.  
 
Since we are unaware of the specific mechanisms 
used in each of the keyloggers we tested we do not 
yet understand the reasons that they performed 
differently, nor can we draw any conclusions about 
how different programming techniques affect virtual 
keylogging in real-world scenarios.  
 

VIII. FUTURE WORK 

2015 11th International Conference on Innovations in Information Technology (IIT)

90Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



There are many areas in which this research can be 
expanded. Given a larger sample of keyloggers, a 
more complete analysis of keylogger response can be 
performed in which keyloggers are grouped by type 
(i.e. malware, commercial, x86, JavaScript etc.) 
and/or keylogging mechanism. This would provide a 
deeper understanding of the reasons keyloggers differ 
in their ability to log keystrokes from on-screen 
keyboards. The research could also be expanded to 
include other operating systems that may be involved 
in smart city infrastructure if future touch based 
applications become available. 

Keyloggers could also be tested in a specific user 
scenario. For example, in a situation where login 
credentials are used to access a touch-based SCADA 
control terminal we can evaluate the security 
differences between virtual and physical keyboards. 
It would also be useful to discover which keylogger 
architectures are most prevalently flagged and 
quarantined by anti-virus software and determine if a 
correlation exists between keyloggers that are caught 
by anti-virus software and those that are able to log 
virtual keystrokes. 

Additional research can also be conducted to uncover 
techniques that are effective in capturing virtual 
keystrokes and understand the feasibility of 
implementing these techniques in future touchlogging 
software. This has an inherent risk to it since it can be 
used maliciously, but attackers will be evolving their 
malware to fit this use case.  If we can stay ahead of 
the curve and understand the risks better, we can be 
prepared to defend against the threat.   

IX. CONCLUSION 

We have demonstrated that currently available 
keyloggers respond differently using the Microsoft 
Windows on-screen keyboard verses a physical 
keyboard. We have presented an overview of the 
different methods that can be used to create 
keyloggers and suggested that these architectural 
differences directly affect the keylogger’s ability to 
successfully log keystrokes made on a virtual 
keyboard. We have also presented a number of future 
studies that could be performed to further understand 
the security implications involved when dealing with 
on-screen keyboards and keyloggers.  

As the smart cities of the future are planned and 
infrastructure developed it is important to be aware of 
what security risks may be created during the 
process. As the threat of keylogging evolves to 

include additional input methods, understanding their 
functionality will be key to developing effective 
defensive capabilities to mitigate the risk. If we are 
willing to more fully address the security concerns 
inherent in the advancement of smart city technology 
in its early stages of development we stand a chance 
at maintaining a secure and reliable infrastructure 
now and far into the future.  

VII. REFERENCES  

[1] Dark-Reading, “‘The 8 Most Common Causes 
of Data Breaches  And How You Can Prevent 
Them,’” Dark Reading, pp. 2013–2015, 2015. 

[2] Verizon Business, “2014 Data Breach 
Investigations Report,” Verizon Bus. J., vol. 
2014, no. 1, pp. 1–60, 2014. 

[3] V. E. Solutions, “2015 DBIR Contributors,” 
Verizon Bus. J., 2015. 

[4] S. Sagiroglu and G. Canbek, “Keyloggers: 
Increasing threats to computer security and 
privacy,” IEEE Technol. Soc. Mag., vol. 28, no. 
3, pp. 10–17, 2009. 

[5] C. a Wood and R. K. Raj, “Keyloggers in 
Cybersecurity Education,” 2015. 

[6] J. Aron, “Smartphone jiggles reveal your private 
data,” New Sci., no. August 2011, p. 21128255, 
2015. 

[7] D. Damopoulos, G. Kambourakis, and S. 
Gritzalis, “From keyloggers to touchloggers: 
Take the rough with the smooth,” Comput. 
Secur., vol. 32, pp. 102–114, 2013. 

[8] T. Holz, M. Engelberth, and F. Freiling, 
“Learning more about the underground 
economy: A case-study of keyloggers and 
dropzones,” in Lecture Notes in Computer 
Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in 
Bioinformatics), 2009, vol. 5789 LNCS, pp. 1–
18. 

[9] PWC, “Managing cyber risks in an 
interconnected world,” no. September 2014, 
2015. 

[10] ICS-CERT, “Alert (ICS-ALERT-11-343-01A),” 
2014.  

2015 11th International Conference on Innovations in Information Technology (IIT)

91Authorized licensed use limited to: SHIV NADAR UNIVERSITY. Downloaded on December 07,2022 at 17:06:48 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


