Forensic Issues in IoT devices using NAND Storage

Suchit Reddi

Under supervision of Dr. Sonal Singhal

Abstract

- This project focuses on rendering data unrecoverable on IoT devices using NAND-based storage like SSDs.
- The recoverability of a file depends on the sanitization technique used and determination of attempting entity.
- Working of modern drives differs from classic mechanical drives, rendering old sanitization methods ineffective
- Methods suitable for SSDs were researched, and the ones compatible with IoT devices were selected.
- The selected methods were implemented as a command-line utility.

Introduction • How is NAND flash storage advantageous?

- How does the NAND flash controller trick the operating system?
- Garbage collection, TRIM, and wear leveling were introduced in SSD devices. Are they helping or hindering sanitization?
- What is verification? How is it done?
- Are all the methods compatible with every device?
- Why should IoT devices care about sanitization?
- And what happens if it is neglected?

IoT in major crimes

IoT devices are an easy target compared to more powerful machines like laptops and mobiles.

- Target Breach Credit card data of over 70 million customers was stolen. Data stored in RAM and disk storage of POS systems was scraped using memory scraping.
- Mirai Botnet This botnet had over 6,00,000 IoT devices. It only targeted IoT devices, and most of them used NAND flash storage, which allowed it to spread faster.
- WannaCry WannaCry affected over 2,30,000 in 150 countries. This devastating malware spread and locked down the firmware stored on the boot partition of storage devices.

Firmware-based SANITIZE • Manufacturer provides sanitization commands in the device

- firmware, accessible by specific tools.
- compatibility with an IoT device. (ATA, SATA, SCSI, UAS) hdparm --user-master u --security-erase-enhanced \$strongp \$partition
- How the storage device is interfaced determines its • SANITIZE feature set in hdparm must be supported.
- The enhanced secure erase command claims to wipe all data from every block, including the overprovisioning area.
- But do you trust the manufacturer to sanitize your personal data? Some researchers found that these companies can lie!

			is no	ot surprising	g, since
			of th	ne drives re	ported
			CUI	RITY featu	re set.
			coul	d not verif	y if the
	*	SANITIZE_ANTIFREEZE_LOCK_EXT SANITIZE feature set	command the	remaining	seven,
	*	OVERWRITE_EXT command reserved 69[1]	UNI	T" comma	nd relia
	*	Extended number of user addr	essable sectors		
Security	/:	"a,\$\$_		urce (SAFE	L'Erast,
	Master	password revision code = 6553 supported	4 ¹		
	not not	enabled _{EXPLOIT}			
		frozen [msf >]			
	noc _	supported: enhanced erase			
	188min	for SECURITY ERASE UNIT. 188m	in for ENHANCED	SECURITY ERASE U	NIT.
ogical	Unit WW	N Device Identifier: 50000399	c25034a8		
	NAA	,MI : 5 Y MM '7 P'			
	IEEE OU	I MMD : 000039MM d			
	Unique	1D : 9C25034a8			
	corre				
	LUCKS S	P Ybmmd JMMmmmmMMM			

Compatibility of SANITIZE feature set

the standard is not yet final. Eight that they supported the ATA SE-One of these encrypts data, so we e sanitization was successful. Of only four executed the "ERASE ably.

Verifiable Sanitization for SSDs)

Other methods In the firmware-based method, hdparm, there are a few more methods:

- Block erase: It raises each block to a voltage higher than the standard program voltage (erase voltage) and drops it to the ground, returning the block to a "Fresh-out-of-box" state.
- Crypto scrambling: It rotates the internal cryptographic key in self-encrypting drives by sanitizing the key storage area.
- Trim sector ranges: It can only allocate certain sectors as free for the garbage collector. But it does not erase data. hdparm --trim-sector-ranges 66634:56665 ... |dev|sda

- Cryptographic Wipe • We came up with this to compensate for incompatibility.
- The complete storage device is encrypted using VeraCrypt, which supports arm architecture (used by IoT devices like Pi).
- The encrypted drive, along with the key, is overwritten with random values. But the OP area might still have bits of data.

dd if=/dev/random of=\$partition bs=1M status=progress

- We overwrite the drive again with zeros to force the controller to either swap OP blocks for encrypted/randomized/zeroed blocks or to erase existing blocks. We format it in the end.
- This process replaces personal with useless data in OP area, greatly reducing the chances of recovery.

😹 Samsung_test_partition - Autopsy 4.21.0 — 🗆 🗙													
Case	View Tools Window	Help											
+	Add Data Source 📠 I	Images/Videos 🔣	Communic	ations 🌣			\simeq	•	• • Keyword	Lists	Qr Keyn	ord Search	•
	>	O Listing										- () - v	• 🗆
		/img_suco	ess_vera.bin)								1 Br	esulte
۳.	Data Sources	Table T	umbnail	Summary									
	I initial_image											7-11-1-1	-
	2_raied_veracrypt	n et al									Save	Save Table as CSV	
II `	B m success vera bir	Name			s	C	0	Modifie	d Time	Chang	ge Time	Access T	lime
6	4 dd random zero	Voal	loc 1767 0	1047527424				0000-00-	00:00:00:00	0000-0	0-00 00:00:00	0000-00-	00 00
6	5_after_format_mkf	fs											
6	after_format_mkfs	·											~
6	■ after_os_M_del												_
6	🗉 📓 unrel_sda7_final	Data /	artifacts	Anal	ysis Resul	ts	0	ontext	Annotatio	ons	Other Oo	currences	
6	usb_1_dd_orig	Hex	Text		Applicat	non		ŀ	ile Metadata		USA	count	_
1	usb_2_after_crypter	rase Page:	1 of 63	936	Page	€ ≯	G	o to Page:	1	h	ump to Offset		
8-1	File Views												
	E 🖞 File Types	0x000000	000: 6X 8	9 DA 06	0D 72	77 52	. 50	C 2C 94	AF 53 31	F1 F2	nrv2	\	: A
	Deleted Files	0x000000	10: 92 1 120- 73 5	2 28 68	52 50 1	ac cr		8 23 26	FD D4 50	C5 6C	*Dvo D		
	B File Size	0x00000	030: E3 7	2 2F 1B	15 23	42 90	A1	18 11	78 A8 07	60 AE	. E/#B.		
8.	Data Artifacts	0x000000	040: C1 5	7 80 9A	9D 6C	F7 C7	82	5F 42	7A C1 3F	97 8A	.W1	Bs.?	
	- Metadata (56)	0x000000	50: 88 2	6 20 86	E7 25 1	SE DA		AE 68	F1 80 1A	99 23	.4		
Η.,	- 💽 Web Downloads (4)) 0x000000	060: 99 2	9 C7 B4	BC FE :	33 60) C1	69 96	E5 BD F3	32 SA	.)31	.1	£
e-9	Analysis Results	0x000000	070: 73 A	3 B6 87	B0 04	11 20	B8	75 48	EB AD 57	73 7C	\$.uXWs	
	EXIF Metadata (4)	0x000000	080: 22 C	5 6E F5	13 B9	69 05	DE	5 31 DF	64 SE ED	Al 62	".ni.	.1.d^b	×
1	Keyword Hits (153)	00000000	090: E6 F	D 4F 89	44 76 :	2E 0E	84	CO AS	9D F3 B2	3C FD	O.Dv	·····<.	
	- 🛃 User Content Suspe	ected (4) 0x000000	040: 7D A	2 29 78	B5 EC	33 92	C C C	07 82	12 46 46	07 87).)3.		4 - C
	OS Accounts	0x000000	100: DE E	8 28 03	46 65 1	67 AL	- U4 - 94	66 45	66 17 Ph	27 10	491		
8	a Tags			0 10 00									*

What does encryption do to data?

Verification

- Is the sanitization successful? How will you check it?
- Take a binary image of the storage device at each necessary step of the process using the *dd* command.

dd if=\$partition of=/<out location>/image.bin status=progress

- Use a forensic recovery tool (Autopsy) to recover still readable files from these images.
- A command-line utility tool was prepared, which included all the discussed methods and a few more variations of it.
- This tool was used for testing sanitization and verification processes in an automated way.

0	Modified Time	Change Time	Access Time
	0000-00-00 00:00:00	0000-00-00 00:00:00	0000-00-00 00:00:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	0000-00-00 00:00:00	0000-00-00 00:00:00	0000-00-00 00:00:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
3	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
1	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
0	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
1	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
0	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
0	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
3	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:
	2023-11-08 21:19:08 IST	2023-11-08 21:19:08 IST	2023-11-08 21:19:

Metac	iata	05	Acco	unt	Dat	ta Ar	rtifac	ts /	Anal	ysis	Results	Context	Annotations
Pa	ge	¢	⇒	Go	to P	age	1				Jump	to Offset	
54	46	5.3	20	20	20	20	0.0	02	08	00	00	.R.NTFS	
00	F 8	00	00	3F	00	FF	00	00	28	51	74		. ? (Qs
80	00	80	00	77	37	15	00	00	00	00	00		7
00	00	00	00	72	F 3	01	00	00	00	00	00		
01	00	00	00	32	80	40	41	15	82	89	sc		.2.8A\
30	17	88	71	70	λC	22	C0	74	08	5.6	84		21. T. C.V.
CD	10	52	ΣB	70	32	24	CD	16	CD	19	ΣB		
73	20	69	73	20	62	67	74	20	61	20	62	.This is	s not a b
62	6C	65	20	64	69	73	6B	$2\mathbb{E}$	20	50	6C	ootable	disk. Pl
20	69	6E	73	65	72	74	20	61	20	62	6F	ease in:	sert a bo
6C	65	20	66	6C	67	70	70	79	20	61	6E	otable :	floppy an
72	65	73	73	20	61	62	79	20	6B	65	79	dpress	s any key

Memorywipe Demo

GitHub Link: https://github.com/SuchitReddi/memorywipe

- Demo Running on a Raspberry Pi connected to an SSD.
- Demo Verification results on Autopsy

Sanitization in data centers

with a complete discrete.

Future Works

- The tool can be improved with low wear-inducing methods.
- Completely automate the tool for IoT devices with limited access and explore options when no shell access is available.
- Possibility of sanitizing mobile storage using adb interface.
- Tools specific to widely used OS, device interface, or type.
- Hardware-based operations for sanitization and verification.
- Researching into Factory Access Mode, Flash Transition Layer, mtd-devices.

Hardware methods and complexity

Conclusion

- Importance of disk storage sanitization for IoT devices
- How NAND flash storage affected the game of sanitization.
- Discussed sanitization techniques targeting NAND storage.
- The most compatible and feasible techniques were converted into a command line tool open for public use.
- The need for hardware methods to gain better control.