
Intruder
Capture System

EED397: IOT(Internet of Things)

Professor: Dr Rohit Singh

Akshay Veeragandham
Suchit Reddi

Kolli Sreeram Sai
Koteswara Bezawada

Abstract
This project introduces an IoT-based Intruder Capture
System utilizing the MQTT protocol for efficient
communication. Powered by a Raspberry Pi, it manages
access and intrusion detection.
In the event of an incorrect password attempt, a camera
captures the intruder's photo, sent in real-time to a
subscribing device for verification.
Integrating hardware and software, the Raspberry Pi handles
MQTT messaging, resulting in a scalable, robust door
security system.
This system enhances safety and smart access control,
showcasing the synergy of IoT in real-world applications.

Components
Raspberry pi

Camera
Module

Numpad

MQTT
Protocol

Circuit Connections
We are using 8 GPIO pins for interfacing the

matrix keypad module.

The GPIO pins 5,6,13,19 are used for lines and

12,16,20,21 for columns.

We are using the GPIO.BCM pin mode.

A camera module is connected to the CSI camera

connector.

Camera Module
Enhancing the security measures of
the Smart Door Security System,
the camera module is activated
upon incorrect password attempts.
Capturing images in real-time, the
camera module visually verifies
individuals seeking access. This
visual data not only adds an extra
layer of authentication but also
facilitates real-time monitoring and
alerts in the event of unauthorized
access.

Raspberry Pi
At the heart of the Smart Door
Security System lies the Raspberry
Pi, functioning as the central
control unit. This versatile single-
board computer is responsible for
managing access control, processing
keypad input, and activating the
camera module. The GPIO pins of
the Raspberry Pi are utilized to
interface with the system's
peripherals, creating a seamless
integration between hardware and
software.

4x4 Matrix Keypad
The keypad serves as the
primary user interface for
entering access codes into the
system. Interfacing with the
Raspberry Pi, the keypad
provides a secure and user-
friendly means of input. Its
integration is crucial for
enabling convenient access
control, allowing users to
input their access codes with
ease.

Matrix Keypad Code

MQTT Protocol
The MQTT (Message Queuing
Telemetry Transport) protocol acts as
the communication backbone of the
system. This l ightweight and efficient
protocol enable secure and real-time
data exchange between devices. In the
context of the Smart Door Security
System, Mosquitto Mqtt is util ized
for transmitting images captured by
the camera module. This ensures that
subscribing devices receive prompt
alerts and visual verification in
response to security events.

Working Code
Sender Code Reciever Code

Challenges
Most of the time, the MQTT message payloads are
text, either a small block of text or a JSON payload
of data. That said, it is possible for devices to send
files in the MQTT message as a big block of binary
data.

The issue is that most MQTT clients have issues
receiving MQTT messages that aren't text, and
freak out when the payloads are binary or files.

Solution: Python script that subscribes to the
MQTT messages, and then saves the contents of
those messages as binary files.

Dashboard & Receiving:

Image Constraints & remote passcode managing

Image size:-

We were not able to send the original image that was captured by the Pi
camera as the image was around 1 MB. The subscriber is not able to read
and create an image file as the size is considerably large.
Solution: We used a compression software or algorithm.

Password changing:-

Users not being able to set the access code for the matrix keypad is not
user-friendly. The user should be able to remotely set the access code.

Conclusion
In conclusion, the Intruder Capture System presents a
commendable solution for secure access control within the realm of
the IoT.
While facing challenges such as image size constraints and limited
password change accessibility, the system excels in providing real-
time alerts and maintaining a user-friendly interaction.
Future iterations could focus on image compression refinement,
code optimization, biometric integration, improved password
management, and integration with broader smart home ecosystems.

References
GitHub:

Paho MQTT Library Documentation:
Eclipse Paho - MQTT for Python.
(https://www.eclipse.org/paho/clients/python/docs/)
Libcamera Documentation:
Libcamera - A camera stack for embedded systems.
(https://libcamera.org/docs/)
ImageMagick Documentation:

Blog Post: "Files Over MQTT - Solution in Python.”
(https://davidmac.pro/posts/2021-07-21-files-over-mqtt/)

 (https://github.com/SuchitReddi/ics)

 (https://imagemagick.org/script/index.php)

Thank
You

